
Absolute quantitation of metabolites using machine learning and 
StandardCandles as universal calibrators - the second-generation model

Introduction
The transformative power of Artificial Intelligence (AI) has become increasingly apparent in 
both our daily lives (e.g. GPT-X and DALL-E) and in scientific research (e.g.
AlphaFold). Recently, some novel use AI methods for the identification of compounds from 
MS/MS spectra have also been published.(1) The promise of AI in science is two-fold: to find 
nuanced connections within large datasets, which enable the prediction of hitherto “unseen” 
phenomena and to “learn” inherently difficult tasks which typically need high levels of 
expertise. At Matterworks, we are actively working on both capabilities of AI – focusing on 
novel methods to access hitherto intractable metabolomic information directly from raw 
spectra.

One of the fundamental challenges of MS is that we are determining the behavior of neutral 
compounds in the liquid phase through detecting charged analytes in the gas phase. Decades 
of efforts have failed to produce an accurate mathematical model for complex ionization 
processes.(2) Consequently, methods have been developed to link the detected gas phase 
MS signal to the absolute concentration in the gas phase (e.g., matrix matched calibration 
curves, isotope dilution MS). These methods lack both simplicity and scalability. They are 
typically developed on an analyte-by-analyte basis and require experts to validate analyte 
detection and to analyze data.(3) The determination of absolute concentration of small polar 
metabolites directly from raw spectra is the first challenge Matterworks is addressing using AI 
with our first product, Pyxis (Figure 1).

The Pyxis platform approaches the determination of absolute metabolite concentrations in a 
fundamentally different way. One core novelty of the Matterworks solution is the use of 
universal calibrators, called “StandardCandles” after the celestial objects used to calculate the 
distance to stars. The StandardCandles were carefully selected to encode structure and 
composition-dependent ionization physics across a broad swath of chemical space. We have 
developed a proprietary technology platform to generate spectral data to “feed” our model -
incorporating everything from training set design, sample creation, acquisition work list 
creation, and data extraction. Using this platform we can pretrain the model on a broad 
concentration range of an ever-growing list of analytes. All training data integrated into the 
deep learning model is acquired with an optimized LC-MS method and samples incorporating 
our StandardCandles. Any subsequent experiments that incorporate the StandardCandles and 
use the same LC-MS method can be submitted for instant absolute concentration 
determination using the Pyxis model.

Analytical Methods
One of the core improvements in our second-generation model was the development of the 
method used to collect data. A target group of 160 analytes of key cellular metabolites, were 
tested using multiple columns, additives, gradients, and pHs, with the goal of maximizing 
analyte detection in a single method. All data were recorded on three identically configured 
Thermo Fisher Scientific Orbitrap Exploris 120 mass spectrometers connected to Thermo
Fisher Scientific Transcend LX-2/LX-4 with a Vanquish Flex, enabling parallel column 
equilibration and injection. The method is shown below and has proven robust in providing 
near identical data.

Training Set Creation and QC

Figure 1. Workflow for predicting concentrations with Pyxis. Samples must be prepared using the 
StandardCandles and acquired using the canned LC-MS acquisition method. Resultant raw data can be uploaded 
to the cloud for immediate prediction of absolute concentration.

The goal of Matterworks’ in-house training set generation platform is to create a large data set 
representing the variations of “situations” the model will be required to predict. Using custom 
software, plates of simulated samples are created for automated preparation and LC-MS 
analysis. Each sample has a unique distribution of analyte concentrations and different 
background matrices.

Because the operation of the AI model requires full spectra as input, we are not constrained by 
traditional requirements of method development. Figure 2 shows the separation of the isomers 
L-Leucine and L-Isoleucine – although not sufficient for conventional quantitation, the AI 
accurately quantifies these analytes. Our initial concentration prediction models (shown in this 
poster) were evaluated by testing concentration accuracy for a set of 70 analytes.
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Performance and Results
In order to validate and track the model performance as training dataset size increases and model 
architecture changes, we have designed “benchmarking” training sets. The data from these 11 plates 
incorporate the complete analyte training ranges and five matrices – E. coli lysate, Ham’s medium, 
Human Plasma-Like Medium (HPLM), RPMI, and the Pyxis “Extraction Solution” (blank matrix). Media 
dilutions and the RPMI have not been included in the training set. In this way, we can test the ability of 
the model to predict for unseen matrices. Experimental concentrations are calculated by spiking 
standards of known concentration above the known concentrations in the defined media.

The current status of model prediction is summarized in Figures 4 and 5. The most critical conclusion 
from the two figures is that the model accuracy is independent of the matrix. The predictive power, 
however, is weaker for specific analytes, and degrades near the limits of detection and quantification. 
The average absolute percent error of all measurements in the benchmark plates was 36% and median 
was 25%. The worst performing analytes and concentration ranges inform where the training set needs 
to be augmented in the future.

It is noteworthy that in spite of the poor separation highlighted in Figure 2, the model’s predictions for 
isomers L-Leucine and L-Isoleucine (highlighted with a red star in Figure 4 and 5) are not substantially 
different from those of well-separated analytes. Figure 6 further emphasizes this fact by “blowing up” 
the panels for those analytes.
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Table 1. Details of the MS (left) and LC (right) operating parameters which are used in the 
collection of training set data. Note because we are running on a 2 column system we are 
continually collecting data – 6.5 minutes on each column.
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Column: Waters Atlantis Premier BEH Z-HILIC VanGuard FIT 
Column 
(2.5µm, 2.1mm x 50mm)

Solvent A - Water with 20mM Ammonium Carbonate and 
0.25 ammonium carbonate (v/v) (pH=9.6).  
Solvent B - Acetonitrile

Figure 2. 
Demonstration of 
poor-quality 
separation which can 
still result in 
successful predictions 
from the AI model. 
XICs for Leucine 
(black) and Isoleucine 
(red) injected as 
separate compounds 
(top) and from a 
randomly selected 
training sample 
(bottom). 

Figure 3. Two 
examples of ongoing 
QC completed during 
training set 
acquisition. Left is a 
set-by-set verification 
that theoretical 
concentration and 
peak area (using 
traditional techniques) 
are correlated. Right is 
the mass error from 
three instruments and 
over 9 million 
extracted ion 
chromatograms.

Figure 4. Current predictions from model on benchmark data. Included are ~89,000 known concentrations 
spanning three orders of magnitude in five different matrices. Note that RPMI (pink) is a matrix which has 
not been trained on. Log-Log plot.

Figure 5. For data plotted in Figure 5, the median of the absolute percent error – parsed by analyte and by 
matrix. Error bars are standard deviation, and the pink bar is an “unseen” matrix.

Advantages and Conclusions
As our training set increases in size, we expect to improve the accuracy of the concentration 
prediction to match (and possibly surpass) that of traditional techniques. In the current 
embodiment there are key advantages for using AI with universal calibrators for absolute 
concentration prediction.

1) In providing both a turn-key method and lowering the separation requirements for analytes, 
the barrier to access absolute concentration measurements for a broad swath of metabolites is 
lowered such that it is easily accessible to the non-expert.

2) By removing the need for post-acquisition data QC and analysis, absolute concentration of 
large numbers of metabolites can be determined in near real time. The input for the model is the 
raw data file from the instrument and the output is absolute concentration (with quality metrics).

3) Any analyte which can be detected using the Pyxis method can be trained – providing broad 
scalability of analytes which can be predicted by the model. Since the absolute concentration is 
predicted on non-targeted data, when the number of trained analytes increases, concentrations 
of new analytes can be predicted on previously acquired data.

Pxyis has been shown to deliver accurate absolute concentrations of polar metabolites 
across three orders of magnitude and a wide range of matrices, including matrices not 
used for training. Concentration accuracy was assessed for 70 representative polar 
metabolites by reference to known concentration benchmarks. Data were acquired using 
a standardized untargeted LC-MS method and AI model that improves in breadth and 
accuracy through training accretion. These advances in machine learning for quantitative 
metabolomics demonstrate the power of AI for the interpretation of unstructured, raw MS 
data.
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Figure 6. Details of the performance on the poorly separated isomers L-Isoleucine (left) and L-Leucine 
(right). Lack of stratification by color further emphasizes the matrix generalizability of the model.
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