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The transformative power of Artificial Intelligence (Al) has become increasingly apparent in
both our daily lives (e.g. GPT-X and DALL-E) and in scientific research (e.g.

AlphaFold). Recently, some novel use Al methods for the identification of compounds from
MS/MS spectra have also been published.(1) The promise of Al in science is two-fold: to find
nuanced connections within large datasets, which enable the prediction of hitherto “unseen”
phenomena and to “learn” inherently difficult tasks which typically need high levels of
expertise. At Matterworks, we are actively working on both capabilities of Al — focusing on
novel methods to access hitherto intractable metabolomic information directly from raw
spectra.

One of the fundamental challenges of MS is that we are determining the behavior of neutral
compounds in the liquid phase through detecting charged analytes in the gas phase. Decades
of efforts have failed to produce an accurate mathematical model for complex ionization
processes.(2) Consequently, methods have been developed to link the detected gas phase
MS signal to the absolute concentration in the gas phase (e.g., matrix matched calibration
curves, isotope dilution MS). These methods lack both simplicity and scalability. They are
typically developed on an analyte-by-analyte basis and require experts to validate analyte
detection and to analyze data.(3) The determination of absolute concentration of small polar
metabolites directly from raw spectra is the first challenge Matterworks is addressing using Al
with our first product, Pyxis (Figure 1).

The Pyxis platform approaches the determination of absolute metabolite concentrations in a
fundamentally different way. One core novelty of the Matterworks solution is the use of
universal calibrators, called “StandardCandles” after the celestial objects used to calculate the
distance to stars. The StandardCandles were carefully selected to encode structure and
composition-dependent ionization physics across a broad swath of chemical space. We have
developed a proprietary technology platform to generate spectral data to “feed” our model -
incorporating everything from training set design, sample creation, acquisition work list
creation, and data extraction. Using this platform we can pretrain the model on a broad
concentration range of an ever-growing list of analytes. All training data integrated into the
deep learning model is acquired with an optimized LC-MS method and samples incorporating
our StandardCandles. Any subsequent experiments that incorporate the StandardCandles and
use the same LC-MS method can be submitted for instant absolute concentration
determination using the Pyxis model.

Analytical Methods

One of the core improvements in our second-generation model was the development of the
method used to collect data. A target group of 160 analytes of key cellular metabolites, were
tested using multiple columns, additives, gradients, and pHs, with the goal of maximizing
analyte detection in a single method. All data were recorded on three identically configured
Thermo Fisher Scientific Orbitrap Exploris 120 mass spectrometers connected to Thermo
Fisher Scientific Transcend LX-2/LX-4 with a Vanquish Flex, enabling parallel column
equilibration and injection. The method is shown below and has proven robust in providing
near identical data.

Parameter Setting . .
Column: Waters Atlantis Premier BEH Z-HILIC VanGuard FIT
Source H-ESI with polarity switching Column
(-2.5kV to 3.5kV) (2.5pum, 2.1mm x 50mm)
Transfer Tube 315°C
Solvent A - Water with 20mM Ammonium Carbonate and

Vaporizer 350°C 0.25 ammonium carbonate (v/v) (pH=9.6).
RF lens (%) 60 ms Solvent B - Acetonitrile
Max Injection 60m

Time (min) Flow (mL/min) % SolventB
Max Trap Fill 2E6

0 0.5 25
Sheath 50

1 0.5 25
Auxiliary 10

8.5 0.5 20
Sweep 1

9.5 0.5 20
Scan Range 70-800 m/z

10 0.5 25
Resolution 60,000

12 0.5 25
Calibration EASY-IC at run start

Table 1. Details of the MS (left) and LC (right) operating parameters which are used in the
collection of training set data. Note because we are running on a 2 column system we are
continually collecting data — 6.5 minutes on each column.
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Figure 1. Workflow for predicting concentrations with Pyxis. Samples must be prepared using the
StandardCandles and acquired using the canned LC-MS acquisition method. Resultant raw data can be uploaded
to the cloud for immediate prediction of absolute concentration.

The goal of Matterworks’ in-house training set generation platform is to create a large data set
representing the variations of “situations” the model will be required to predict. Using custom
software, plates of simulated samples are created for automated preparation and LC-MS
analysis. Each sample has a unique distribution of analyte concentrations and different
background matrices.

Because the operation of the Al model requires full spectra as input, we are not constrained by

Derformance and Results

In order to validate and track the model performance as training dataset size increases and model
architecture changes, we have designed “benchmarking” training sets. The data from these 11 plates
incorporate the complete analyte training ranges and five matrices — E. coli lysate, Ham’s medium,
Human Plasma-Like Medium (HPLM), RPMI, and the Pyxis “Extraction Solution” (blank matrix). Media
dilutions and the RPMI have not been included in the training set. In this way, we can test the ability of
the model to predict for unseen matrices. Experimental concentrations are calculated by spiking
standards of known concentration above the known concentrations in the defined media.

The current status of model prediction is summarized in Figures 4 and 5. The most critical conclusion
from the two figures is that the model accuracy is independent of the matrix. The predictive power,
however, is weaker for specific analytes, and degrades near the limits of detection and quantification.
The average absolute percent error of all measurements in the benchmark plates was 36% and median
was 25%. The worst performing analytes and concentration ranges inform where the training set needs
to be augmented in the future.

It is noteworthy that in spite of the poor separation highlighted in Figure 2, the model’s predictions for
isomers L-Leucine and L-Isoleucine (highlighted with a red star in Figure 4 and 5) are not substantially
different from those of well-separated analytes. Figure 6 further emphasizes this fact by “blowing up”
the panels for those analytes.
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Figure 5. For data plotted in Figure 5, the median of the absolute percent error — parsed by analyte and by
matrix. Error bars are standard deviation, and the pink bar is an “unseen” matrix.
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Figure 6. Details of the performance on the poorly separated isomers L-Isoleucine (left) and L-Leucine
(right). Lack of stratification by color further emphasizes the matrix generalizability of the model.

Advantages and Conclusions

As our training set increases in size, we expect to improve the accuracy of the concentration
prediction to match (and possibly surpass) that of traditional techniques. In the current
embodiment there are key advantages for using Al with universal calibrators for absolute
concentration prediction.

1) In providing both a turn-key method and lowering the separation requirements for analytes,
the barrier to access absolute concentration measurements for a broad swath of metabolites is
lowered such that it is easily accessible to the non-expert.

2) By removing the need for post-acquisition data QC and analysis, absolute concentration of
large numbers of metabolites can be determined in near real time. The input for the model is the
raw data file from the instrument and the output is absolute concentration (with quality metrics).

3) Any analyte which can be detected using the Pyxis method can be trained — providing broad
scalability of analytes which can be predicted by the model. Since the absolute concentration is
predicted on non-targeted data, when the number of trained analytes increases, concentrations
of new analytes can be predicted on previously acquired data.

Pxyis has been shown to deliver accurate absolute concentrations of polar metabolites
across three orders of magnitude and a wide range of matrices, including matrices not
used for training. Concentration accuracy was assessed for 70 representative polar
metabolites by reference to known concentration benchmarks. Data were acquired using
a standardized untargeted LC-MS method and Al model that improves in breadth and
accuracy through training accretion. These advances in machine learning for quantitative
metabolomics demonstrate the power of Al for the interpretation of unstructured, raw MS
data.

All authors are employees and shareholders of Matterworks.
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